### 1D NMR VnmrJ Quick Guide Rosha Teymoori

# 1) Getting started

- Log on using your Username and Password.
- Click on the VnmrJ Desktop Icon.
- Type *e* <Ent>. Place sample in spinner. Gauge properly. Place on top of magnet. Type *i* <Ent>.
- Click Experiments=>Proton (or desired expt.) type su <Ent>.
- In the bottom Parameter Panel, select the **Start** tab and the **Standard or sample info** page.

| Start Acq                                | juire Process                                                                                                        | Insert Eject                                               | Lock scan         | Setup hardware | Auto lock Auto |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|----------------|----------------|
| Sample Info<br>Lock<br>Shim<br>Spin/Temp | Operator: vnmr1<br>Sample informa<br>Sample name<br>Sample directory<br>Solvent<br>Concentration<br>Notebook<br>Page | ation<br>/ (_20150731_01)<br>CDCI3<br>DMSO CDCI3 D<br>0 ml | Clear<br>20 Other | Email Comments | ARAMETERS      |

- Choose your solvent from the **Solvent** dropdown menu.
- Add your text to the **Comment** field.
- Check spinning. If you want to spin the sample. Go to start menu, left side Spin/Temp section to regulate spinning speed

| Start Ac                                              | quire Process                                           | Insert    | Eject | Lock scan | Setup hardw                        | are                                          | Auto lock                                                                | Auto tune                                                 | Grad                 |
|-------------------------------------------------------|---------------------------------------------------------|-----------|-------|-----------|------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|
| Sample Info<br>Lock<br>Shim<br><mark>Spin/Temp</mark> | Spinner: liquids<br>Regulate Speed<br>O<br>Current O Hz | Off       | Spir  | 1 Off     | Control s Cotrol s Abo Warr O Igno | s <b>pinr</b><br>rt afte<br>n afte<br>re spi | <b>her from thi</b><br>er spinner erro<br>r spinner error<br>inner error | s panel only<br>r                                         |                      |
|                                                       | Temperature<br>Regulate Temp<br>25<br>Current 25.0 C    | Regulated | Tem   | p Off     | Control t<br>Abo<br>Wari<br>Igno   | <b>emp</b><br>rt afte<br>n afte<br>re ter    | erature fror<br>er temperature<br>r temperature<br>nperature erro        | n this panel o<br>error<br>error<br>r<br>Reset VT Controi | i <b>nly</b><br>Iler |

• Set up the temperature if you are planning to run an experiment at higher temp (max Temp = 65C)

# 2) Lock

- Type Lock
- Wait for the message Idle in the message box at the bottom of the panel

| Start Ac                                 | quire Process Inser                                                                                                        | t Eject Lock scan                                                                                                                                             | Setup hardware Auto Io | ck Auto tune | Gradient shim Logout                                                               |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|------------------------------------------------------------------------------------|
| Sample Info<br>Lock<br>Shim<br>Spin/Temp | □ Spin       0 Hz         ☑ Lock       57.7         Lock status       Regulated         Select lock signal         Find z0 | 20     ±1     -5962     =       -5962     ±1     20     =       20     ±1     20     =       Gain     38     ±1     38     =       Phase     ±1     265     = | Ţ                      | <br>         | Autolock<br>Automatic<br>Sample<br>20 only<br>Unlocked<br>Not used<br>Run autolock |
| e be                                     | ▲ Idle                                                                                                                     | exp4: Setup C                                                                                                                                                 | Complete               |              |                                                                                    |

# **3) Shimming**

- Go to start shim
- Adjust Z1, and Z2 until the lock signal is max

| Start A            | Acquire Process         | Insert Eject | Lock scan                  | Setu                                                                                                 | p hardware    | Auto lo                                | ck Auto tu             | ne Grac                         | lient shir     |
|--------------------|-------------------------|--------------|----------------------------|------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|------------------------|---------------------------------|----------------|
| Sample Inf<br>Lock | • Lock scan<br>FID scan |              | Z1<br>-5649<br>Z2          | ±10 X1<br>-52                                                                                        | 233 ±         | :10 X3<br>4611                         | ±10                    | Z3X<br>2313<br>Z3Y              | ±10            |
| Spin/Tem           | z0<br>-5962 ±1          | 77.1         | 731<br>Z3<br>-7841         | ±10 -19                                                                                              | 56 ±<br>350 ± | 10 6523                                | ±10                    | -2105<br>Z2X2Y2<br>-1266        | ±10            |
|                    | Lk Power ±1             | 11.2         | 24<br>-3711<br>25<br>.7779 | $\pm 10 \begin{vmatrix} 12 \\ 567 \end{vmatrix}$<br>$\pm 10 \begin{vmatrix} XY \\ 114 \end{vmatrix}$ | 70 ±<br>40 ±  | :10 <u>729</u><br>:10 ZXY<br>:10 -3698 | ±10<br>±10             | 22XY<br>873                     | ±10            |
|                    | Lk Gain<br>38 ±1        |              | Z6<br>9140                 | ±10                                                                                                  | 12<br>586 ±   | 10 ZX2Y2<br>-1002                      | ±10                    | _                               |                |
|                    | Lk Phase ±1             | Lock 77.2    | Spin on Spin O<br>Spin off | ff<br>Hz                                                                                             | Read defau    | lt shims<br>from pars                  | Save1 Rea<br>Save shim | d1 <mark>Save2</mark><br>s Read | Read2<br>shims |
|                    |                         |              |                            |                                                                                                      | Receiver gai  | in 20                                  | File                   |                                 |                |

# 4)Tunning

• Type *su* <Ent> tune via the pre amp, press the chan bottom



• Take the probe cable from pre amp ( right side) and attach it to probe in 'tune interface''



 channel 1 is proton, the matching and tuning rod has an orange labeling, tune and match until you see small number like 001 which is shown in the above picture.



 $\circ$  For <sup>13</sup>C acquisition, channel 1 is <sup>13</sup>C and channel 2 is <sup>1</sup>H, <sup>13</sup>C rods are green. Turn match 4 and tune 1 rods



## 5)Acquiring your spectrum

#### • Select the **acquire** tab and the **default** page

| Start Acquir               | e Process Show time Go Stop MoveSV                         | V Est. pw90 Arrays Seque  |
|----------------------------|------------------------------------------------------------|---------------------------|
| Default H1<br>Acquisition  | Experiment: PROTON Solvent: dmso O                         | bserve: H1 Decoupler: C13 |
| Pulse Sequence<br>Channels | Acquisition options                                        | Receiver gain (dB) 20     |
| Flags<br>Future Actions    | Spectral width (select) ppm<br>(or enter) -2.0 to 14.0 ppm |                           |
| Overview                   | Number of scans 4                                          |                           |
|                            | Pulse angle array V degrees                                |                           |

- Chose your parameters, or type
- $\circ$  *nt* (number of scan) = desired number
- $\circ$  d1(delay between scans) = desired number
- $\circ$  bs (block size) = desired number
- *Type ga* or *go* or click on GO bottom
- Message :BS# completed
- Type wft to process
- When complete *f full aph vsadj* <Ent>

## 6)Referencing your spectrum:

- locate your solvent peak
- Click the **Cursor** icon and place red cursor line on top of solvent peak.
- Type *nl rl(<your solvent ppm>p)* <Ent>. For example, for CDCl<sub>3</sub> you would *type nl rl(7.24p)* <Ent>.

# 7)Integrating your spectrum ( not for 13C NMR)

- Click the **Full spectrum** icon and click the **Integral** icon
- Type *cdc dc cz* <Ent>
- Expand around first desired integral region.
- Click **Resets** icon (it has scissors).
- Use a *left* mouse click for each integral reset point. If you make a mistake, use the *right* mouse button to undo last reset point. To restart, type *cz* <Ent>.
- Click the **Hand** icon and drag the spectrum to next region, click **Resets** icon, left click your next points, repeat for every region.
- When complete, click Full spectrum icon.

## 8) Plotting your spectra

- Typical example, *pl pscale ppf pir pltext page* <Ent>
- Type *ds*<Ent, expand desired plot regions, and repeat plot command

# **Common Plotting Commands:**

| pl                                 | plot spectrum                                      |
|------------------------------------|----------------------------------------------------|
| pscale                             | plot scale                                         |
| pir                                | plot integral regions                              |
| ppf                                | plot peak frequencies                              |
| pll                                | plot line list with freqs in Hertz                 |
| pltext                             | plot text                                          |
| <i>pltext</i> (150,150) parameters | plot text in top right (use with pll) pap plot all |
| page                               | send plot to printer                               |



| VNMR Basic Commands |                                                                                                                                                                                                                |                                                                                                |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Command             | Description                                                                                                                                                                                                    | Typed Example                                                                                  |  |  |  |  |
| nt                  | <b>number of transients</b> : Sets the number of transients (scans) to be acquired. You should always select a multiple of 4 (e.g. 4, 8, 128). The larger the number of scans, the better the signal to noise. | <i>nt=16</i> : default setting for<br>1H,CDCl3                                                 |  |  |  |  |
| bs                  | <b>block size</b> : Directs the acquisition computer, as data are acquired, to periodically store a block of data on the disk.                                                                                 | bs=8 : sets the block size to 8 scans.                                                         |  |  |  |  |
| ga                  | <b>submit experiment to acquisition and FT the result</b> : Performs the experiment described by the current acquisition parameters and Fourier transforms ( <i>wft</i> ) the result.                          | ga                                                                                             |  |  |  |  |
| wft                 | weight and Fourier transform 1D data: Performs a Fourier transform on one or more 1D FIDs with weighting applied to the FID.                                                                                   | <i>wft</i> : used if you stop the acquisition prior to completion or when loading a saved FID. |  |  |  |  |
| aph                 | <b>automatic phase of rp and lp</b> : Automatically calculates the phase parameters lp and rp required to produce an absorption mode spectrum and applies them to the current spectrum.                        | <i>aph</i><br>usually gives well phased spectra                                                |  |  |  |  |
| f, full             | <b>full</b> : Sets the horizontal and vertical control parameters to produce a display on the entire screen.                                                                                                   | f or full                                                                                      |  |  |  |  |
| vsadj               | Automatic vertical adjustment: Automatically sets the vertical scale, vs, in the absolute intensity mode so that the largest peak is at the requested height.                                                  | <i>Vsadj</i> : resets the vertical scale to fit on the screen                                  |  |  |  |  |
| dscale              | Display scale below spectrum or FID.                                                                                                                                                                           | dscale                                                                                         |  |  |  |  |
| aa                  | abort acquisition: immediately aborts the acquisition.                                                                                                                                                         | аа                                                                                             |  |  |  |  |
| sa                  | stop acquisition: stops acquisition after acquiring current transient.                                                                                                                                         | sa                                                                                             |  |  |  |  |
| su                  | <b>submit a setup experiment to acquisition</b> : Sets up the system hardware to match the current parameters but does not initiate data acquisition.                                                          | su                                                                                             |  |  |  |  |
| svf                 | Save FIDs in current experiment: Saves parameters, text, and FID data in the current experiment to a file.                                                                                                     | <i>svf('H1_070703')</i> : saves the FID as a file named H1_070703                              |  |  |  |  |